Growth of Highly Oriented Chalcocite Thin Films on Glass by Aerosol-Assisted Spray Pyrolysis Using a New *Single-Source* **Copper Thiolate Precursor**

Sven Schneider, Yu Yang, and Tobin J. Marks*

*Department of Chemistry and the Materials Research Center, Northwestern Uni*V*ersity, 2145 Sheridan Road, ^E*V*anston, Illinois 60208-3113*

> *Recei*V*ed June 1, 2005 Re*V*ised Manuscript Recei*V*ed July 6, 2005*

The development of Cu*x*S thin films for photovoltaics slowed in the late 1980s because of the intrinsic instability of CdS/Cu2S heterojunction cells.1 However, *n*-type semiconductors such as $TiO₂$ and ZnO have recently been shown to yield stable *p*/*n* heterojunction cells with cuprous sulfide, stimulating renewed interest in high-quality Cu_xS films.^{2,3} Among the Cu*x*S phases exhibiting photovoltaic activity, monoclinic chalcocite⁴ has the smallest band gap and conductivity.5 Because the topotactic ion exchange, typically used for high-quality CdS/Cu₂S heterojunctions, is not possible for producing $Cu₂S/metal–oxide heterostructures,$ gas-phase deposition techniques are attractive for the growth of high-quality $Cu₂S$ thin films. Currently radio frequency (RF) sputtering of copper targets in a H_2S atmosphere⁶ and low-pressure physical vapor deposition⁷ are the only available gas-phase methods for growing phase-pure α -Cu₂S thin films.8 Although the *single-source* precursor approach is very efficient for metal chalcogenide deposition by chemical vapor deposition,9 no *single-source* precursors currently exist for α -Cu₂S.¹⁰ However, in situ generated Cu(I) thiolates and mixed metal thiolate *single-source* precursors have been employed for hexagonal chalcocite nanoparticles¹¹ and CuES_2

- **1954**, *96*, 533.
- (2) (a) Reijnen, L.; Meester, B.; Goossens, A.; Schoonman, J. *Mater. Sci. Eng.* **2002**, *C19*, 311. (b) Liu, G.; Schulmeyer, T.; Thissen, A.; Klein, A.; Jaegermann, W. *Appl. Phys. Lett.* **2003**, *82*, 2269. (c) Reijnen, L.; Meester, B.; Goosens, A.; Schoonman, J. *Chem. Vap. Deposition* **2003**, *9*, 15.
- (3) (a) Burgelman, M.; Pauwels, H. J. *Electron. Lett.* **1981**, *17*, 224. (b) Berhanu, D.; Boyle D. S.; Govender, K.; O'Brien, P. *J. Mater. Sci.: Mater. Electron.* **2003**, *14*, 579.
- (4) Several nomenclature conventions have been used for the monoclinic chalcocite phase (JCPDS 33-0490). We employ α -Cu₂S, indicating the low-temperature phase of the chalcocite polymorphs: Chakrabarti, D. J.; Laughlin, D. E. In *Phase Diagrams of Binary Copper Alloys*; Subramanian, P. R., Chakrabarti, D. J., Laughlin, D. E., Eds.; ASM: Materials Park, 1994.
- (5) Nair, M. T. S.; Guerrero, L.; Nair, P. K. *Semicond. Sci. Technol.* **1998**, *13*, 1164.
- (6) (a) Armantrout, G. A.; Miller, D. E.; Vindelov, K. E.; Brown, T. G.; *J. Vac. Sci.* **1979**, *16*, 212. (b) Vanhoecke, E.; Burgelman, M. *Thin Solid Films* **1984**, *112*, 97. (c) He, Y. B.; Polity, A.; Österreicher, I.; Pfisterer, D.; Gregor, R.; Meyer, B. K.; Hardt, M. *Physica B* **2001**, *³⁰⁸*-*310*, 1069.
- (7) Leon, M.; Terao, N.; Rueda, F. *Phys. Stat. Solidi* **1981**, *67*, K11.
- (8) Reijnen, L.; Meester, B.; de Lange, F.; Schoonman, J.; Goossens, A. *Chem. Mater.* **2005**, *17*, 2724.
- (9) (a) O'Brien, P; Haggata, S. *Ad*V*. Mat. Opt. Electron.* **¹⁹⁹⁵**, *⁵*, 117. (b) O'Brien, P.; Nomura, R. *J. Mater. Chem.* **1995**, *5*, 1761. (c) Barron, A. R. *Ad*V*. Mat. Opt. Electron.* **¹⁹⁹⁵**, *⁵*, 245. (d) Maury, F. *Chem. Vap. Deposition* **1996**, *2*, 113. (e) Bochmann, M. *Chem. Vap. Deposition* **1996**, *2*, 85. (f) Gleizes, A. N. *Chem. Vap. Deposition* **2000**, *6*, 155. (g) Veith, M. *J. Chem. Soc., Dalton Trans.* **2002**, 2405.

 $(E = Ga, In)$ chalcopyrite powders and thin films,¹² respectively. These results raise the intriguing question of whether copper(I) thiolates could be effective precursors for growth of copper-rich chalcocite thin films. We report here on the synthesis of a new, highly soluble copper(I) thiolate *single-source* precursor and its implementation in the growth of high-quality α -Cu₂S thin films by aerosol-assisted spray pyrolysis.

Light-sensitive CuS*^t* Bu (**1**) was synthesized in high yield (Scheme 1) by a modified literature procedure (Supporting Information).¹³ CI-MS of **1** up to $m/z = 800$ shows tetrameric [CuS*^t* Bu]4 as the heaviest and major gas-phase species, a common cluster size for copper(I) thiolates in the solid state.¹⁴ Atmospheric pressure thermogravimetric analysis (TGA) of **1** (Figure 1)¹⁵ shows a relatively narrow thermal decomposition range (170-225 °C) with a residue of 52.0%, which is in excellent agreement with that calculated for decomposition to $Cu₂S$ (52.1%). The calculated decomposition onset and point of maximum rate of weight loss (PMRW) are 198 and 215 °C (at 48 mass % decomposition), respectively. TGA at 0.8 Torr leaves a residue of ∼8 mass % with sublimation onset (169 °C) and PMRW (187 °C, 93 mass % loss) approaching the decomposition values at atmospheric pressure. Therefore, complex **1** sublimation is accompanied by significant decomposition, and attempts to employ **1** as precursor in conventional low-pressure metal-organic CVD (LP-MOCVD) were unsuccessful, because of premature decomposition and sintering in the precursor reservoir.

Reaction of 1 with 0.5 equiv PMe₃ in diethyl ether affords moderately air-sensitive $(CuS'Bu)_{4}(PMe_{3})_{2}(2)$ in >80% yield
(Scheme 1: Supporting Information), Complex 2 is stable (1) Reynolds, D. C.; Leies, G.; Antes, L. T.; Marburger, R. E. *Phys. Rev.* (Scheme 1; Supporting Information). Complex 2 is stable

- (10) (a) Nomura, R.; Miyawaki, Toyosaki, T.; Matsuda, H. *Chem. Vap. Deposition* **1996**, *2*, 174. (b) Fainer, N. I.; Rumyantsev, Y. M.; Kosinova, M. L.; Yurev, G. S.; Maksimovskii, E. A.; Zemskova, S. M.; Sysoev, S. V.; Kuznetsov, F. A. *Inorg. Mater.* **1998**, *34*, 1049. (c) Kemmler, M.; Lazell, M.; O'Brien, P.; Otway, D. J.; Park, J.-H.; Walsh, J. R. *J. Mater. Sci. Mater. Electron.* **2002**, *13*, 531 (c) McCain, M. N.; Metz, A. W.; Yang, Y.; Stern, C. L.; Marks, T. J. *Chem. Vap. Deposition* **2005**, *11*, 291.
- (11) (a) Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A. *J. Am. Chem. Soc.* **2003**, *125*, 5638. (b) Sigman, M. B., Jr.; Ghezelbash, A.; Hanrath T.; Saunders, A. E.; Lee, F.; Korgel, B. A. *J. Am. Chem.* Soc. **2003**, *125*, 16050. (c) Chen, L.; Chen, Y.-B.; Wu, L.-M. *J. Am. Chem. Soc.* **2004**, *126*, 16334.
- (12) (a) Hirpo, W.; Dhingra, S.; Sutorik, A. C.; Kanatzidis, M. G. *J. Am. Chem. Soc.* **1993**, *115*, 1597. (b) Hollingsworth, J. A.; Hepp, A. F.; Buhro, W. E. *Chem. Vap. Deposition* **1999**, *5*, 105. (c) Banger, K. K.; Cowen, J.; Hepp, A. F. *Chem. Mater.* **2001**, *13*, 3827. (d) Banger, K. K.; Harris, J. D.; Cowen, J. E.; Hepp, A. F. *Thin Solid Films* **2002**, *⁴⁰³*-*404*, 390. (e) Hollingsworth, J. A.; Banger, K. K.; Jin, M. H.- C.; Harris, J. D.; Cowen, J. E.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.; Hepp, A. F. *Thin Solid Films* **²⁰⁰³**, *⁴³¹*-*432*, 63. (f) Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. *Chem. Mater.* **2003**, *15*, 3142.
- (13) Reifenschneider, W. U.S. Patent 3,206,466, 1965.
- (14) Janssen, M. D.; Grove, D. M.; van Koten, G. *Prog. Inorg. Chem.* **1997**, *46*, 997.
- (15) TGA analyses were carried out with $10-25$ mg of the samples in alumina pans at heating rates of 3° C/min. N₂ flow rates at atmospheric pressure were adjusted to 100 mL/min.

10.1021/cm051175g CCC: \$30.25 © 2005 American Chemical Society Published on Web 07/29/2005

Figure 1. TGA traces of CuS^{*I*}Bu (1) under N₂ at 0.8 Torr (black line) and at atmospheric pressure (red line) and $(CuS'Bu)_{4}(PMe_{3})_{2}$ (2) at atmospheric pressure (blue line).

Figure 2. Solid-state molecular structure of $(CuS'Bu)_{4}(PMe_{3})_{2}$ (2) with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Unlabeled atoms are related to the labeled ones via the crystallographic inversion center in the middle of the Cu₄ quadrangle.
Selected distances (\AA) and angles (deg): Cu₁ - Cu₂, 2.8733(7); Cu₁ - Cu₂A, Selected distances (Å) and angles (deg): Cu1-Cu2, 2.8733(7); Cu1-Cu2A,
2.9483(9): Cu1-S1, 2.2331(9): Cu1-S2, 2.2970(9): Cu2-S2, 2.1603(9): 2.9483(9); Cu1-S1, 2.2331(9); Cu1-S2, 2.2970(9); Cu2-S2, 2.1603(9); Cu2-S1A, 2.1629(9); Cu1-P1, 2.2381(9); Cu2-Cu1-Cu2A, 77.55(2); Cu1-Cu2-Cu1A, 102.454(19); S1-Cu1-P1, 138.25(3); S2-Cu1-P1, 103.07(4); S1-Cu1-S2, 118.09(3); and S1A-Cu2-S2, 173.57(4).

in toluene as assessed by NMR for more than 2 weeks under $N₂$ but slowly decomposes upon exposure to light. Singlecrystal X-ray diffraction (XRD) of **2** reveals a tetrameric cluster in the solid state (Figure 2; Supporting Information) similar to that of $(CuS'Bu)_{4}(PPh_{3})_{2}$.¹⁶ Full structural details will be discussed elsewhere.¹⁷ Electrospray massspectrometry of $CH₂Cl₂$ solutions shows a cluster series $[C_{u_{x+1}}(S'Bu)_x(PMe_3)_y]^+$ having $x \ge 4$ with the maximum size around $x = 9^{18}$ and no ligand chemical degradation. Therefore, aerosol-assisted spray pyrolysis should be an ideally mild delivery technique for film growth with **2,** avoiding premature precursor decomposition. TGA analysis of **2** at atmospheric pressure (Figure 1) reveals stepwise decomposition between 105 and 240 °C, leaving a residue

(17) Schneider, S.; Marks, T. J. Manuscript in preparation.

Figure 3. Left side: *^θ*-2*^θ* XRD pattern of a 320 nm chalcocite film deposited from a toluene solution of 2 on glass at 270 °C (Cu K α , 1.541) Å). The 00*l* peak assignment refers to the hexagonal sublattice of β -Cu₂S (JCPDS 26-1116). Right side: *ω*-scan rocking curve of the film 004 peak.

(40.1 mass %) very close to that calculated for clean decomposition to Cu2S (41.7%). A first step (residue, ∼90%; calculated onset, ∼130 °C) is tentatively assigned to initial PMe₃ loss ([(CuS'Bu)₄PMe₃], 90.0%). The shallow TGA trace leads to a rise in slope at around 200 °C/∼78 mass % with the curve evolution suggesting further phosphine loss to give CuS*^t* Bu (80.1 mass %), which is complete in the range of CuS*^t* Bu decomposition onset. Therefore, **2** is an amply soluble CuS*^t* Bu (**1**) source in apolar solvents and undergoes, like 1 , clean thermal decomposition to $Cu₂S$.

The applicability of 2 as a *single-source* Cu₂S precursor was demonstrated using aerosol-assisted spray pyrolysis of toluene solutions (Supporting Information). Smooth, brown, ¹⁹⁰-320 nm thin films, strongly adherent by the "Scotch tape test", were grown on glass substrates at 270 °C at rates of [∼]1.5 nm/min. *^θ*-2*^θ* XRD scans of the films (Figure 3) can be indexed in the hexagonal β -Cu₂S lattice (*high*chalcocite, JCPDS 26-1116) with a high preferential 00*l* orientation as observed for reactively RF-sputtered Cu2S films.⁶ The ω -scan rocking curve of the 004 peak (fwhm $=$ 0.6°) further documents the extremely high out-of-plane orientation of the films on an amorphous substrate. However, β -Cu₂S films undergo reversible phase transitions around 80 ^oC to monoclinic *low*-chalcocite Cu_xS (1.997 $\leq x \leq 2.000$) or *pseudo*-orthorhombic djurleite $(1.942 \le x \le 1.988)$ phases,19 both representing superstructures with only marginal distortions of the hexagonal β -Cu₂S anion sublattice.²⁰ Therefore, 00*l* ordered β -Cu₂S films are not easily distinguished from α -Cu₂S or djurleite by θ -2 θ scans. In the present work, XRD of the powder detached from the substrate by ultrasonication identifies the material as monoclinic α -Cu₂S (JCPDS 33-0490).²¹

A scanning electron microscopic (SEM) image of a typical film reveals large plates with in-plane dimensions in the [∼]1-² *^µ*m range (Figure 4). Note that the grain boundaries are oriented parallel to the substrate normal, separating hexagonally-shaped microplatelets. Both the crystallographic orientation and the film microstructure, therefore, suggest an island growth mechanism. The root-mean-square (rms) roughness by atomic force microscopy of single grains is as low as $1-3$ nm over an area of $1-2 \mu m^2$, in accord with

(20) Evans, H. T., Jr. *Z. Kristallogr.* **1979**, *150*, 299.

⁽¹⁶⁾ Dance, I. G.; Guerney, P. J.; Rae, A. D.; Scudder, M. L. *Inorg. Chem.* **1983**, *22*, 2883.

⁽¹⁸⁾ As a result of the identical mass of the fragments [CuS*^t* Bu] and [PMe3]2 $(m/z = 152)$, cluster peaks larger than $[Cu_{(x+1)-n}(SBu)_{x-n}(PMe_3)_{2n}]$
could not be unambiguously assigned could not be unambiguously assigned.

^{(19) (}a) Leon, M.; Terao, N.; Rueda, F. *Phys. Stat. Solidi.* **1981**, *67*, K11. (b) Leon, M. *J. Mater. Sci.* **1990**, *25*, 669.

⁽²¹⁾ A weak peak in the films at $2\theta = 33.4^{\circ}$ is occasionally observed, especially for films with $d \le 150$ nm, and is assigned to the [1000] peak of a djurleite trace impurity. The 00*l* orientation of β -Cu₂S transforms to the *h*00 orientation in the djurleite superstructure.

Figure 4. Cross-sectional SEM image of a 320 nm chalcocite film on glass.

highly uniform growth. The rms film roughness over $25 \mu m^2$ is ∼10 nm.

No features of C, O, or P impurities are detected in the Cu2S films by X-ray photoelectron spectroscopy after cleaning the surface by brief Ar⁺ sputtering (15 min/∼45 Å). All Cu peaks are free of satellites, implying the absence of Cu^{II}.²² The binding energies of the Cu $2p_{3/2}$ and $2p_{1/2}$ (932.8 eV, 953.1 eV) and S 2p features (161.8 eV) are in agreement with those of bulk $Cu₂S²³$ Electrical properties were characterized by four-probe and Hall-effect measurements at room temperature. Conductivities, Hall mobilities, and hole concentrations are in the range of $16-32$ S/cm, $3.2-4.2$ cm²/
(V s) and $2.3-6.2 \times 10^{19}$ cm⁻³ respectively. Heavy n-type (V s), and $2.3-6.2 \times 10^{19}$ cm⁻³, respectively. Heavy p-type doning was similarly observed in RE-sputtered α -Cu-S doping was similarly observed in RF-sputtered α -Cu₂S films. $6c,24$ The hole concentration in chalcocite is linearly related to copper vacancies at the valence band edge which act as acceptors with high ionization probabilities.^{24b} This suggests our films to be in the compositional range $Cu_{1.999}S-$ Cu_{1.997}S. Indirect (1.4 eV) and direct (2.2 eV) band gaps of a 320 nm film were estimated by transmission optical spectroscopy from $(\alpha h v)^{1/2}$ vs *hv* and $(\alpha h v)^2$ vs *hv* plots and agree well with the band gaps of α -Cu₂S single crystals along the same crystallographic axis.25

In conclusion, we presented the synthesis, characterization, and thermal stability characteristics of phosphine complex **2** as a soluble source of polymeric **1**. The efficacy as the first *single-source* precursor for deposition of α -Cu₂S was demonstrated by aerosol-assisted spray pyrolysis growth of phase-pure, 21 highly textured chalcocite thin films on glass. The good organic solvent solubility suggests further utility of **2**, for example, for the preparation of cuprous sulfide nanoparticles or Cu2S/polymer hybrid structures. These results support a general applicability of phosphine-stabilized copper(I) thiolates as a new class of *single-source* $Cu₂S$ precursors.

Acknowledgment. We thank the NSF MRSEC program for support of this research (DMR-0076097) and C.L. Stern for single-crystal X-ray data acquisition. S.S. thanks the DFG for a postdoctoral fellowship under the Emmy Noether-Programm.

Supporting Information Available: Synthetic schemes and analytical data for **1** and **2**, X-ray structural information on **2**, and film growth and characterization details (PDF). X-ray crystallographic file of **2** (CIF). This material is available fee of charge via the Internet at http://pubs.acs.org.

CM051175G

⁽²²⁾ Frost, D. C.; Ishitani, A.; McDowell, C. A. *Mol. Phys.* **1972**, *24*, 861. (23) Bhide, V. G.; Salkalachen, S.; Rastogi, A. C.; Rao, C. N. R.; Hedge,

M. S. *J. Phys. D: Appl. Phys.* **1981**, *14*, 1647. (24) (a) Leong, J. Y.; Yee, J. H. *Appl. Phys. Lett.* **1979**, *35*, 601. (b) Wagner, R.; Wiemho¨fer, H.-D. *J. Phys. Chem. Solids* **1983**, *44*, 801 (25) Mulder B. J. *Phys. Stat. Solidi* **1973**, *15*, 409.