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The development of G8 thin films for photovoltaics
slowed in the late 1980s because of the intrinsic instability
of CdS/CuS heterojunction cells.However,n-type semi-
conductors such as Ti@&nd ZnO have recently been shown
to yield stablep/n heterojunction cells with cuprous sulfide,
stimulating renewed interest in high-quality Sufilms 23
Among the CyS phases exhibiting photovoltaic activity,
monoclinic chalcocite has the smallest band gap and
conductivity® Because the topotactic ion exchange, typically
used for high-quality CdS/G8 heterojunctions, is not
possible for producing G&/metat-oxide heterostructures,
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(E = Ga, In) chalcopyrite powders and thin filrk,
respectively. These results raise the intriguing question of
whether copper(l) thiolates could be effective precursors for
growth of copper-rich chalcocite thin films. We report here
on the synthesis of a new, highly soluble copper(l) thiolate
single-sourcerecursor and its implementation in the growth
of high-qualityo-CwS thin films by aerosol-assisted spray
pyrolysis.

Light-sensitive CuBu (1) was synthesized in high yield
(Scheme 1) by a modified literature procedure (Supporting
Information)!2 CI-MS of 1 up tom/z= 800 shows tetrameric
[CuSBuU]4 as the heaviest and major gas-phase species, a
common cluster size for copper(l) thiolates in the solid state.
Atmospheric pressure thermogravimetric analysis (TGA) of
1 (Figure 1}° shows a relatively narrow thermal decomposi-
tion range (176-225°C) with a residue of 52.0%, which is
in excellent agreement with that calculated for decomposition
to CwS (52.1%). The calculated decomposition onset and

gas-phase deposition techniques are attractive for the growthpoint of maximum rate of weight loss (PMRW) are 198 and

of high-quality CuS thin films. Currently radio frequency
(RF) sputtering of copper targets in a$atmosphefeand
low-pressure physical vapor deposifi@ne the only available
gas-phase methods for growing phase-por€wS thin
films.8 Although thesingle-sourceorecursor approach is very
efficient for metal chalcogenide deposition by chemical vapor
depositior? no single-sourceprecursors currently exist for
o-Cw,S 10 However, in situ generated Cu(l) thiolates and
mixed metal thiolatesingle-sourceprecursors have been
employed for hexagonal chalcocite nanopartiélesd CUES
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215°C (at 48 mass % decomposition), respectively. TGA
at 0.8 Torr leaves a residue o8 mass % with sublimation
onset (169°C) and PMRW (187°C, 93 mass % loss)
approaching the decomposition values at atmospheric pres-
sure. Therefore, complek sublimation is accompanied by
significant decomposition, and attempts to emplbyas
precursor in conventional low-pressure metal-organic CVD
(LP-MOCVD) were unsuccessful, because of premature
decomposition and sintering in the precursor reservoir.
Reaction ofl with 0.5 equiv PMein diethyl ether affords
moderately air-sensitive (CtE1),(PMes); (2) in >80% yield
(Scheme 1; Supporting Information). Compl2xs stable
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: Figure 3. Left side: 6—26 XRD pattern of a 320 nm chalcocite film
304 — CuS'Bu (0.8 Torr) deposited from a toluene solution Bfon glass at 270C (Cu Ko, 1.541
A). The 00 peak assignment refers to the hexagonal sublattig®@f,S
20 - — t } : - )
CuS'Bu (760 Torr) (JCPDS 26-1116). Right sides-scan rocking curve of the film 004 peak.
10 1 — (CuS'Bu),(PMe,),
Y N (40.1 mass %) very close to that calculated for clean
50 70 90 110 130 150 170 190 210 230 250 decomposition to G (41.7%). A first step (residue;90%;

Temp [°C] calculated onset;-130 °C) is tentatively assigned to initial

Figure 1. TGA traces of CuBu (1) under N at 0.8 Torr (black line) and PMe; loss ([(CuSBu)sPMes], 90.0%). The shallow TGA
at atmospheric pressure (red line) and (Bufk(PMes)2 (2) at atmospheric trace leads to a rise in slope at around 2G0~78 mass %
pressure (blue line). with the curve evolution suggesting further phosphine loss
to give Cu®Bu (80.1 mass %), which is complete in the
range of CuBu decomposition onset. Therefor2,is an
amply soluble CuBu (1) source in apolar solvents and
undergoes, likel, clean thermal decomposition to £u

The applicability of2 as asingle-sourceCuw,S precursor
was demonstrated using aerosol-assisted spray pyrolysis of
toluene solutions (Supporting Information). Smooth, brown,
190-320 nm thin films, strongly adherent by the “Scotch
tape test”, were grown on glass substrates at°Z7@t rates
of ~1.5 nm/min.60—26 XRD scans of the films (Figure 3)
can be indexed in the hexagondiCwS lattice figh
chalcocite, JCPDS 26-1116) with a high preferential 00
orientation as observed for reactively RF-sputteredSCu
Figure 2. Solid-state molecular structure of (CBR)s(PMey)2 (2) with films.® The w-scan rocking curve of the 004 peak (fwhm
thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms are 0.6°) further documents the extremely high out-of-plane

omitted for clayity. Unla_beled atoms are relqted to the labeled ones via the orientation of the films on an amorphous substrate. However,
crystallographic inversion center in the middle of the,Quadrangle.

Selected distances (&) and angles (deg): €002, 2.8733(7); CutCu2A, B-CLS films undergo reversible phase transitions around 80
2.9483(9); CutS1, 2.2331(9); CutS2, 2.2970(9); Cu2S2, 2.1603(9); °C to monocliniclow-chalcocite CiS (1.997< x < 2.000)
Cu2-S1A, 2.1629(9); CutP1, 2.2381(9); Cu2Cul—Cu2A, 77.55(2); SRR <
Cul—-Cu2—-CulA, 102.454(19); S3Cul—P1, 138.25(3); S2Cul—P1, or pselgdeorthorhomblc' djurleite (1.942< x o 1.988)
103.07(4); SECul-S2, 118.09(3); and S1A-CuB2, 173.57(4). phases? both representing superstructures with only mar-

ginal distortions of the hexagon&Cuw,S anion sublatticé®

. Therefore, 0D orderedf-CwS fil t ily distin-
in toluene as assessed by NMR for more than 2 weeks under erelore orderedp-CLeS films are not easily distin

N> but slowly d 1o liaht. Sinal guished froma-CwS or djurleite by6—26 scans. In the

2 tuls;(owyd_(:fcon:_pose;FgDponfe;xposurle 0 tlgt - >Ingie- present work, XRD of the powder detached from the
crystal 2-ray difiraction ( ) ol reveals a terameric o \qirate by ultrasonication identifies the material as mono-
cluster in the solid state (Figure 2; Supporting Infor-

: o clinic a-Cw,S (JCPDS 33-049C%}.
mation) similar to that of (CuBu)4(PPh)..*8 Full structural . ) . . .
details will be discussed elsewhéfeElectrospray mass- A scanning electron microscopic (SEM) image of a typical

. . film reveals large plates with in-plane dimensions in the
spectrometry of ChCl, solutions shows a cluster series ge p P

X . . . ~1-2 um range (Figure 4). Note that the grain boundaries
¥
[Cux+1(StBUZx(P|Yées)y] havingx = 4 with the maximum size o ¢ ienteq parallel to the substrate normal, separating
around x = 9'® and no ligand chemical degradation.

. . hexagonally-shaped microplatelets. Both the crystallographic
_Therefore_, aero_sol-asssteql spray p_yroly5|s shou!d be Morientation and the film microstructure, therefore, suggest
ideally mild delivery technique for film growth witt®,

1 S ._an island growth mechanism. The root-mean-square (rms)
avoiding premature precursor decomposition. TGA analysis : . . L
: : -~ roughness by atomic force microscopy of single grains is as
of 2 at atmospheric pressure (Figure 1) reveals stepwise

. . . low as -3 nm over an area of-12 um?, in accord with
decomposition between 105 and 24D, leaving a residue H
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could not be unambiguously assigned. transforms to thé00 orientation in the djurleite superstructure.
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Figure 4. Cross-sectional SEM image of a 320 nm chalcocite film on glass.

highly uniform growth. The rms film roughness over 2%2
is ~10 nm.

No features of C, O, or P impurities are detected in the
CuwS films by X-ray photoelectron spectroscopy after clean-
ing the surface by brief Arsputtering (15 mint45 A). Al
Cu peaks are free of satellites, implying the absence bf€u
The binding energies of the Cu gpand 2p,, (932.8 eV,
953.1 eV) and S 2p features (161.8 eV) are in agreement
with those of bulk CeS2® Electrical properties were
characterized by four-probe and Hall-effect measurements
at room temperature. Conductivities, Hall mobilities, and hole
concentrations are in the range o4 S/cm, 3.2-4.2 cnt/
(V's), and 2.3-6.2 x 10'° cm3, respectively. Heavy p-type
doping was similarly observed in RF-sputteredCw,S
films.6¢24 The hole concentration in chalcocite is linearly

related to copper vacancies at the valence band edge whicl'f
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act as acceptors with high ionization probabilitiésThis
suggests our films to be in the compositional rangede:8—
Cu99/S. Indirect (1.4 eV) and direct (2.2 eV) band gaps of
a 320 nm film were estimated by transmission optical
spectroscopy fromothy)2vs hw and @he)? vs hv plots and
agree well with the band gaps @fCw,S single crystals along
the same crystallographic axs.

In conclusion, we presented the synthesis, characterization,
and thermal stability characteristics of phosphine complex
2 as a soluble source of polymeric The efficacy as the
first single-sourceprecursor for deposition af-Cu,S was
demonstrated by aerosol-assisted spray pyrolysis growth of
phase-puré! highly textured chalcocite thin films on glass.
The good organic solvent solubility suggests further utility
of 2, for example, for the preparation of cuprous sulfide
nanoparticles or G/polymer hybrid structures. These
results support a general applicability of phosphine-stabilized
copper(l) thiolates as a new class sihgle-sourceCw,S
precursors.

Acknowledgment. We thank the NSF MRSEC program for
support of this research (DMR-0076097) and C.L. Stern for
single-crystal X-ray data acquisition. S.S. thanks the DFG for
a postdoctoral fellowship under the Emmy Noether-Programm.

Supporting Information Available: Synthetic schemes and
analytical data fod and2, X-ray structural information o, and
film growth and characterization details (PDF). X-ray crystal-
ographic file of2 (CIF). This material is available fee of charge
via the Internet at http://pubs.acs.org.

CMO051175G

R.; Wiemhder, H.-D. J. Phys. Chem. Solids983 44, 801

(25) Mulder B. J.Phys. Stat. Solidi973 15, 409.



